Hydrostatic equilibrium of causally consistent and dynamically stable neutron star models
نویسنده
چکیده
We show that the mass-radius (M −R) relation corresponding to the stiffest equation of state (EOS) does not provide the necessary and sufficient condition of dynamical stability for the equilibrium configurations, since such configurations can not satisfy the ‘compatibility criterion’. In this connection, we construct sequences composed of core-envelope models such that, like the stiffest EOS, each member of these sequences satisfy the extreme case of causality condition, v = c = 1, at the centre. We, thereafter, show that the M−R relation corresponding to the said core-envelope model sequences can provide the necessary and sufficient condition of dynamical stability only when the ‘compatibility criterion’ for these sequences is ‘appropriately’ satisfied. However, the fulfillment of ‘compatibility criterion’ can remain satisfied even when the M − R relation does not provide the necessary and sufficient condition of dynamical stability for the equilibrium configurations. In continuation to the results of previous study, these results explicitly show that the ‘compatibility criterion’ independently provides, in general, the necessary and sufficient condition of hydrostatic equilibrium for any regular sequence. Beside its fundamental feature, this study can also explain simultaneously, both (the higher as well as lower) values of the glitch healing parameter observed for the Crab and the Vela-like pulsars respectively, on the basis of starquake model of glitch generation.
منابع مشابه
On the Maximum Mass of Differentially Rotating Neutron Stars.
We construct relativistic equilibrium models of differentially rotating neutron stars and show that they can support significantly more mass than their nonrotating or uniformly rotating counterparts. We dynamically evolve such "hypermassive" models in full general relativity and show that there do exist configurations that are dynamically stable against radial collapse and bar formation. Our re...
متن کاملTransport of Magnetic Fields in Convective, Accreting Supernova Cores
We consider the amplification and transport of a magnetic field in the collapsed core of a massive star, including both the region between the neutrinosphere and the shock, and the central, opaque core. An analytical argument explains why rapid convective overturns persist within a newly formed neutron star for roughly 10 seconds (> 10 overturns), consistent with recent numerical models. A dyna...
متن کاملInterior Solutions for Non - singular Gravity and the Dark Star alternative to Black Holes
The general equations describing hydrostatic equilibrium are developed for Non-singular Gravity. A new type of astrophysical structure, a Super Dense Object (SDO) or “Dark Star”, is shown to exist beyond Neutron star field strengths. These structures are intrinsically stable against gravitational collapse and represent the non-singular alternative to General Relativity’s Black Holes. Typeset us...
متن کاملConstraining properties of rapidly rotating neutron stars using data from heavy-ion collisions
Properties, structure, and thermal evolution of neutron stars are determined by the equation of state of stellar matter. Recent data on isospin-diffusion and isoscaling in heavy-ion collisions at intermediate energies as well as the size of neutron skin in Pb have constrained considerably the density dependence of the nuclear symmetry energy and, in turn, the equation of state of neutron-rich n...
متن کاملOn the maximum rotational frequency of neutron and hybrid stars
We construct self-consistent equilibrium sequences of general relativistic, rotating neutron star models. Special emphasis in put on the determination of the maximum rotation frequency of such objects. Recently proposed models for the equation of state of neutron star matter are employed, which are derived by describing the hadronic phase within the many-body Brueckner–Bethe–Goldstone formalism...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008